文档编号:多效蒸发器操作手册.DOC

多效蒸发器仿真培训系统

操作说明书

北京东方仿真软件技术有限公司 二零零八年四月

目录

一.工艺流程说明	3
1、多效蒸发工作原理简述	3
2、工艺流程简介	4
3. 设备和主要控制	5
4. 控制方案	
二.多效蒸发单元操作规程	7
1.冷态开车操作规程	
2.正常工况下工艺参数	10
3.停车操作规程	11
4.事故操作规程	13
三、仿真界面	16
附: 思考题	18

一.工艺流程说明

1、多效蒸发工作原理简述

采用拜耳法工艺流程生产的氧化铝量占到总产量的 90%以上,是采用高铝硅比铝土矿作原料的新建铝厂首选的工艺流程。拜耳法的原理就是使以下反应在不同条件下向不同的方向交替进行:

$$Al_2O_3$$
 • $xH_2O+2NaOH$ \iff $2NaA1$ (0H) $_4$

首先,在高温高压下以 NaOH 溶液溶出铝土矿,使其中的氧化铝水合物按上式反应向 右进行得到铝酸钠溶液,铁、硅等杂质进入赤泥;而向经过彻底分离赤泥后的铝酸纳溶 液添加晶种,在不断搅拌和逐渐降温的条件下进行分解,使上式反应向左进行析出氢氧 化铝,并得到含大量氢氧化钠的母液;母液经过蒸发浓缩后再返回用于溶出新的一批铝 土矿;氢氧化铝经过煅烧脱水后得到产品氧化铝。在生产过程中由于赤泥的洗涤、氢氧 化铝的洗涤以及蒸汽直接加热等使多余的水进入到生产流程中。在拜耳法生产过程中, 因为氧化铝的溶出率是随着循环母液苛性碱浓度的提高而上升的,如果不蒸发多余的 水,就会导致循环母液浓度的降低,氧化铝析出率下降。因此,必须排除在生产过程中 加入的多余水分来保持生产系统的液量平衡,使生产顺利进行。拜耳法流程中多余水分 的排除,有四种途径:1)作为赤泥的副液而排除 2)作为氢氧化铝的副液而排除 3)作 为自蒸发气体而排除 4)蒸发过程的排除。这四种途径中,前三种排除的水分量较少, 而绝大数水分靠蒸发排除。

通常,无论在常压、加压或真空下进行蒸发,在单效蒸发器中每蒸发 1kg 的水要消耗比 1kg 多一些的加热蒸汽。因此在大规模工业生产过程中,蒸发大量的水分必需消耗大量的加热蒸汽。为了减少加热蒸汽消耗量,可采用多效蒸发操作。

将加热蒸汽通入一蒸发器,则液体受热而沸腾,所产生的二次蒸汽,其压力和温度 必较原加热蒸汽(为了易于区别,在多效蒸发中常将第一效的加热蒸汽称为生蒸气的为 低。因此可引入前效的二次蒸汽作为后效的加热介质,即后效的加热室成为前效二次蒸 汽的冷凝器,仅第一效需要消耗生蒸汽,这就是多效蒸发的操作原理,一般多效蒸发装 置的末效或后几效总是在真空下操作。将多个蒸发器这样连接起来一同操作,即组成一 个多效蒸发器。每一蒸发器称为一效,通入生蒸汽的蒸发器称为第一效,利用第一效的 二次蒸汽以加热的,称为第二效,以此类推。由于各效(末效除外)的二次蒸汽都作为下 一效蒸发器的加热蒸汽,故提高了生蒸汽的利用率(又称为经济程度),即单效蒸发或多效蒸发装置中所蒸发的水量相等.则前者需要的生蒸汽量远大于后者。例如,若第一效为沸点进料,并忽略热损失、各种温度差损失以及不同压力下蒸发潜热的差别,则理论上在双效蒸发中,1kg的加热蒸汽在第一效中可以产生1kg的二次蒸汽,后者在第二效中又可蒸发1kg的水,因此,1kg的加热蒸汽在双效中可以蒸发2kg的水,则D/W=0.5。同理,在三效蒸发器中,1kg的加热蒸汽可蒸发3kg的水,则D/W=0.333。但实际上由于热损失,温度差损失等原因,单位蒸汽消耗量并不能达到如此经济的数值。

多效蒸发操作的加料,可有四种不同的方法:并流法、逆流法、错流法和平流法。 工业中最常用的为并流加料法,溶液流向与蒸汽相同,既由第一效顺序流至末效。因为 后一效蒸发室的压力较前一效为低,故各效之间可毋需用泵输送溶液,此为并流法的优 点之一。其另一优点为前一效的溶液沸点较后一效的为高,因此当溶液自前一效进入后 一效内,即成过热状态而自行蒸发,可以发生更多的二次蒸汽,使能在次一效蒸发更多 的溶液。

2、工艺流程简介

本仿真培训系统以 Na₂O _责稀溶液四效并流蒸发的工艺作为仿真对象。 仿真范围内主要设备为蒸发器、换热器、真空泵、简单罐和阀门等。

原料 Na₂O 前稀溶液经流量调节器 FIC601 控制流量(12063 kg/h)后,进入蒸发器 F601A,料液受热而沸腾,产生 151.7℃的二次蒸汽,料液从蒸发器底部经阀门 LV601流入第二效蒸发器 F601B。压力为 5atm,温度为 250℃的加热蒸汽经流量调节器 FIC602 控制流量(3066.73kg/h)后,进入 F601A 加热室的壳程,冷凝成水后经阀门 VA615 排出。第一效蒸发器 F601A 蒸发室压力控制在 4.93 atm,溶液的液面高度通过液位控制器 LIC601 控制在 50%。第一效蒸发器产生的二次蒸汽经过蒸发器顶部阀门 VA607 后,进入第二效蒸发器 F601B 加热室的壳程,冷凝成水后经阀门 VA616 排出。从第一效流入第二效热发器 F601C。第二效蒸发器 F601B 蒸发室压力控制在 3.22atm,溶液的液面高度通过液位控制器 LIC602 控制在 50%。第二效蒸发器 F601C 加热室的壳程,冷凝成水后经阀门 VA617排出。从第二效流入第三效蒸发器 F601C 加热室的壳程,冷凝成水后经阀门 VA617排出。从第二效流入第三效的料液,受热汽化产生 124.5℃的二次蒸汽,料液从蒸发器

底部经阀门 LV603 流入第四效蒸发器 F601D。第三效蒸发器 F601C 蒸发室压力控制在 1.60 atm,溶液的液面高度通过液位控制器 LIC603 控制在 50%。第四效蒸发器产生的二次蒸汽经过蒸发器顶部阀门 VA610 后,进入冷凝器,冷凝成水后经阀门 VA619 排出。从第三效流入第四效的料液,受热汽化产生 86.8℃的二次蒸汽,料液从蒸发器底部经阀门 LV604 流入积液罐 F602。第四效蒸发器 F601D 蒸发室压力控制在 0.20 atm,溶液的液面高度通过液位控制器 LIC604 控制在 50%。完成液不满足工业生产要求时,经阀门 VA612 卸液。真空泵用于保持蒸发装置的末效或后几效在真空下操作。图 6-1 为多效蒸发单元工艺流程图。

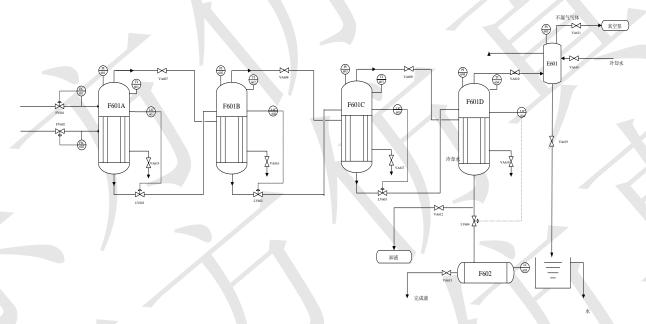


图 6-1 多效蒸发工艺流程

3. 设备和主要控制:

3.1 设备列表:

序号	位号	名称	说明
1	F601A	第一效蒸发器	
2	F601B	第二效蒸发器	
3	F601C	第三效蒸发器	
4	F601D	第四效蒸发器	
5	F602	储液罐	
6	E601	换热器	
7	FV601	流量控制阀	
8	FV602	流量控制阀	
9	LV601	液位控制阀	
10	LV602	液位控制阀	

11	LV603	液位控制阀	
12	LV604	液位控制阀	
13	VA601	截止阀	
14	VA602	截止阀	
15	VA603	截止阀	X
16	VA604	截止阀	
17	VA605	截止阀	
18	VA606	截止阀	
19	VA607	截止阀	
20	VA608	截止阀	
21	VA609	截止阀	
22	VA610	截止阀	
23	VA611	截止阀	4 < / /
24	VA612	截止阀	
25	VA613	截止阀	
26	VA614	截止阀	
27	VB601	球阀	
28	VB602	球阀	
29	VB603	球阀	
30	VB604	球阀	
31	VB605	球阀	
32	VB606	球阀	
33	VB607	球阀	
34	VB608	球阀	
35	VB609	球阀	
36	VB610	球阀	
37	VB611	球阀	
38	VB612	球阀	
39	A	真空泵 A 开关	
40	В	真空泵 B 开关	

3.2 仪表列表:

序号	位号	名称	正常情况显示值
1	FIC601	流量控制仪表	12063.3 kg/h
2	FIC602	流量控制仪表	3066.73 kg/h
3	PI601	压力显示仪表	4.93 atm
4	PI602	压力显示仪表	3.22 atm
5	PI603	压力显示仪表	1.60 atm
6	PI604	压力显示仪表	0.24atm
7	PI605	压力显示仪表	0.20 atm
8	TI601	温度显示仪表	151.7 °C
9	TI602	温度显示仪表	143.8 °C

10	TI603	温度显示仪表	124.5 °C
11	TI604	温度显示仪表	86.8 °C
12	LIC601	液位控制仪表	50%
13	LIC602	液位控制仪表	50%
14	LIC603	液位控制仪表	50%
15	LIC604	液位控制仪表	50%
16	LI605	液位显示仪表	50%

4. 控制方案:

4.1 原料液流量控制

FV601 控制原料液的入口流量,FIC601 检测蒸发器的原料液入口流量的变化,并将信号传至 FV601 控制阀开度,使蒸发器入口流量维持在设定点。流量设置点为12063.3kg/h。

4.2 加热蒸汽流量控制

FV602 控制加热蒸汽的流量,FIC602 检测蒸发器的二次蒸汽流量的变化,并将信号传至 FV602 控制阀开度,使二次蒸汽流量维持在设定点。流量设置点为 3066.73kg/h。

4.3 蒸发器的液位控制

LV601、LV602、LV603 和 LV604 控制蒸发器出口料液的流量,LIC601、LIC602、LIC603 和 LIC604 检测蒸发器的液位,并将信号传给 LV601、LV602、LV603 和 LV604 控制阀的开度,使蒸发器的料液及时排走,使蒸发器的液位维持在设定点。液位设定点为 50%。

二.多效蒸发单元操作规程

1.冷态开车操作规程

- (1) 打开冷却水进口阀 VA614
- (2) 开真空泵 A, 泵前阀 VA611, 控制冷凝器压力
- (3) 开阀门 VA610, 控制蒸发器压力
- (4) 开启排冷凝水阀门 VA619
- (5) 开疏水阀 VA615, VA616、VA617 和 VA618
- (6) 手动调节 FV601, 使 FIC601 指示值稳定到 12063.3kg/h, FV601 投自动(设定值为 12063.3kg/h)

- (7) 开阀门 LV601,调整 F601A 液位在 50%左右
- (8) 当 F601A 压力大于 1atm 时,开阀门 VA607
- (9) 开阀门 LV602, 调整 F601B 液位在 50%左右
- (10) 当 F601B 压力大于 1atm 时,开阀门 VA608
- (11) 调整阀门 LV603 的开度, 使 F601C 中的料液液位在 50%左右
- (12) 当 F601C 压力大于 1atm 时, 开阀门 VA609
- (13) 调节阀门 VA612 开度, 使 F601D 维持一定液位
- (14) 手动调节 FV602, 使 FIC602 指示值稳定到 3066.73 kg/h, FV602 投自动(设定值为 3066.73kg/h)
- (15) 调整阀门 VA607 开度, 使 F601A 压力控制在 4.93atm, 温度控制在 151.7℃
- (16) 调整阀门 VA608 开度, 使 F601B 压力控制在 3.22atm, 温度控制在 143.8℃
- (17) 调整阀门 VA609 开度, 使 F601C 压力控制在 1.60atm, 温度控制在 124.5℃
- (18) F601D 温度控制在 86.8℃
- (19) 分别调节阀门 LV601、LV602、LV603 和 LV604 开度, 使 F601A、F601B、F601C 和 F601D 液位维持在 50%

11.10015 1区区2017	•		
学员姓名:			学员
操作单元:			冷态开车
总分:1030.00			测评历时 0 秒
实际得分:0.00			测评限时 0 秒
百分制得分:0.00			
其中			
普通步骤操作得分:0.00			
质量步骤操作得分:0.00			
趋势步骤操作得分:0.00			
操作失误导致扣分:0.00			
以下为各过程操作明细:	应得	实得	操作步骤说明
开车前准备:	90	0	该过程历时 0 秒
	10	0	开冷却水入口阀门 VA614
	10	0	开真空泵 A
			开真空泵阀门 VA611, 开度为 50%, 控制冷凝
	10	0	器压力在 0.20atm (绝压)

	10	0	开阀门 VA610, 使末效蒸发器压力为负压
	10	0	开排冷凝水阀门 VA619
	10	0	开疏水阀 VA615
	10	0	开疏水阀 VA616
	10	0	开疏水阀 VA617
	10	0	开疏水阀 VA618
	10	0) 助M人内内 VAUIO
	130	0	该过程历时 0 秒
171000001	10	0	打开 FV601 的前截止阀
	10	0	打开 FV601 的后截止阀
	10	0	手动逐渐打开冷物料进口阀门 FV601
	10	0	打开 LV601 的前截止阀
	10	0	打开 LV601 的后截止阀
	10	0	F101A 液位接近 50%时,开阀门 LV601
	10	0	打开 LV602 的前截止阀
	10	0	打开 LV602 的后截止阀
	10	0	F601B 液位接近 50%时,开阀门 LV602
	10	0	打开 LV603 的前截止阀
	10	0	打开 LV603 的后截止阀
	10	0	
	10	0	调整阀门 VA612 的开度,使 LIC604 显示大于
	10	0	0
	10		
热物流进料:	60	0	该过程历时 0 秒
M 13 Diezen 1	10	0	打开 FV602 的前截止阀
	10	0	打开 FV602 的后截止阀
	10		手动逐渐开大开热物流进口阀 FV602 开度, 控
	10	0	制流量在 3066kg/h 左右
			F601A 压力有明显上升时,逐渐打开阀门
X	10	0	VA607
			F601B 压力有明显上升时,逐渐打开阀门
	10	0	VA608
			F601C 压力有明显上升时,逐渐打开阀门
	10	0	VA609
调节至正常:	750	40	该过程历时 0 秒
			调整阀门 VA607 开度,使 F601A 压力控制在
步骤结束: 操作正确	10	10	4.93atm, 温度控制在 151.7℃
			调整阀门 VA608 开度,使 F601B 压力控制在
步骤结束:操作正确	10	10	3.22atm,温度控制在 143.8℃
			调整阀门 VA609 开度,使 F601C 压力控制在
步骤结束: 操作正确	10	10	1.60atm, 温度控制在 124.5℃
步骤结束: 操作正确	10	10	F601D 温度控制在 86.8 左右

	10	0	流量控制器 FIC601 投自动
	10	0	流量控制 FIC601 的 SP 值设为 12063kg/h
	10	0	流量控制器 FIC602 投自动
	10	0	流量控制 FIC602 的 SP 值设为 3066kg/h
	10	0	F601A 液位接近 50%时,投自动
	10	0	液位控制器 LIC601 的 SP 值设为 50
	10	0	F601B 液位接近 50%时,投自动
	10	0	液位控制器 LIC602 的 SP 值设为 50
	10	0	F601C 液位接近 50%时,投自动
	10	0	液位控制器 LIC603 的 SP 值设为 50
	50	0	F601A 压力稳定在 4. 93atm
	50	0	F601A 温度稳定在 151.7℃
	50	0	F601B 压力稳定在 3. 22atm
	50	0	F601B 温度稳定在 143.8℃
	50	0	F601C 压力稳定在 1. 60atm
7 /	50	0	F601C 温度稳定在 124.5℃
	50	.0	F601D 温度稳定在 86.8℃
	50	0	F601A 出口液浓度为 0.12
	50	0	F601B 出口液浓度为 0.14
	50	0	F601C 出口液浓度为 0.20
	50	0	F601D 出口液浓度为 0.30
	10	0	待 F101D 的浓度接近 0.30 时,关闭阀门 VA612
	10	0	打开 LV604 的前截止阀
	10	0	打开 LV604 的后截止阀
	10	0	F601D 液位接近 50%时, LIC604 投自动
	10	0	液位控制器 LIC604 的 SP 值设为 50
	10	0	调节阀门 VA613, 使 F602 液位在 50%左右

2. 正常工况下工艺参数

- (1) 原料液入口流量 FIC601 为 12063.3 kg/h
- (2) 加热蒸汽流量 FIC602 为 3066.73 kg/h
- (3) 第一效蒸发室压力 PI601 为 4.93 atm, 二次蒸汽温度 TI601 为 151.7℃
- (4) 第一效加热室液位 LIC601 为 50%
- (5) 第二效蒸发室压力 PI602 为 3.22 atm, 二次蒸汽温度 TI602 为 143.8℃
- (6) 第二效加热室液位 LIC602 为 50%
- (7) 第三效蒸发室压力 PI603 为 1.60atm, 二次蒸汽温度 TI603 为 124.5℃
- (8) 第三效加热室液位 LIC603 为 50%
- (9) 第四效蒸发室压力 PI604 为 0.24atm, 二次蒸汽温度 TI604 为 86.8℃
- (10) 第四效加热室液位 LIC604 为 50%

(11) 冷凝器压力 PI605 为 0.20atm

3.停车操作规程

- (1) 关闭 LV604, 打开泄液阀 VA612
- (2) 调整 VA612 开度, 使 F601D 中液位保持一定高度
- (3) 关闭 FV602, 停热物流进料
- (4) 关闭 FV601, 停冷物流进料
- (5) 全开排气阀 VA607
- (6) 调整 LV601 的开度, 使 F601A 的液位接近 0
- (7) 当 F601A 中压力接近 1atm 时, 关闭阀门 VA607
- (8) 关闭阀门 LV601
- (9) 调整 VA608 开度, 当 F601B 中压力接近 1atm 时, 关闭阀门 VA608
- (10) 调整 LV602 开度, 使 F601B 液位为 0
- (11) 关闭阀门 LV602
- (12) 调整 VA609 开度, 当 F601C 中压力接近 1atm 时, 关闭阀门 VA609
- (13) 调整 LV603 开度, 使 F601C 液位为 0
- (14) 逐渐开大 VA612 泄液
- (15) 关闭阀门 VA612, VA610
- (16) 关闭真空泵 A, 泵前阀 VA611
- (17) 关闭冷却水阀 VA614
- (18) 关闭冷凝水阀 VA619
- (19) 关闭疏水阀 VA615, VA616、VA617 和 VA618

学员姓名:		学员
操作单元:		正常停车
总分:520.00		测评历时 0 秒
实际得分:0		测评限时 0 秒
百分制得分:0		
其中		
普通步骤操作得分:10.00		
质量步骤操作得分:0.00		
趋势步骤操作得分:0.00		
操作失误导致扣分:0.00		

以下为各过程操作明细:	应得	实得	操作步骤说明
F601A 停车:	230	0	该过程历时 0 秒
	10	0	将控制器 LIC604 设定为手动
	10	0	设定 LIC604 的 OP 值为 0
	10	0	关闭 LV604 前截止阀
	10	0	关闭 LV604 后截止阀
	10	0	打开卸液阀 / / / / / / / / / / / / / / / / / / /
	10	0	调整 VA612 开度,使 F601D 中液位保持一
	10	U	定高度
	10	0	将控制器 FIC602 设定为手动
	10	0	关闭 FV602,停热物流进料
	10	0	关闭 FV602 前截止阀
	10	0	关闭 FV602 后截止阀
	10	0	777=771
	10	0	27,7
	10	0	关闭 FV601 前截止阀
	10	0	2404
	10	0	
	10	0	同时将控制器 LIC601 设定为手动
	10	0	调整阀门 LV601 的开度,使 F601A 液位接 近 0
	10	0	当 F601A 压力为 1atm 左右时,关闭阀 VA607
	10	0	关闭阀 LV601
	10	0	关闭 LV601 前截止阀
	10	0	关闭 LV601 后截止阀
73/	10	0	保持 F601A 压力为 latm 左右
	10	0	F601A 温度为 25℃左右
F601B 停车:	80	0	该过程历时 0 秒
	10	0	调节阀门 VA608 开度, 当 F601B 压力为
	10	U	1atm 左右时,关闭阀 VA608
	10	0	同时将控制器 LIC602 设定为手动
	10	0	调整阀门 LV602 的开度,使 F601B 液位接 近 0
417	10	0	关闭阀 LV602
	10	0	
	10	0	关闭 LV602 后截止阀
	10	0	
	10	0	F601B 温度为 25℃左右

P0010 序 左	00	0	'去\+和 □ □ + 0 + M
F601C 停车:	80	0	3 — I—
	10	0	调节阀门 VA609 开度,当 F601C 压力为
		_	1atm 左右时,关闭阀 VA609
	10	0	将控制器 LIC603 设定为手动
	10	0	调整阀门 LV603 的开度,使 F601C 液位为0
	10	0	关闭阀 LV603
	10	0	关闭 LV603 前截止阀
	10	0	关闭 LV603 后截止阀
	10	0	保持 F601C 压力为 1atm 左右
	10	0	F601C 温度为 25℃左右
F601D 停车:	50	10	该过程历时 0 秒
步骤结束:操作正确	10	10	逐渐开大 VA612 卸液
7/ 7/	10	0	F601D 液位为 0
	10	0	关闭 VA612
	10	0	关闭 VA610
	10	0	F601D 温度为 25℃左右
停真空泵:	20	0	该过程历时 0 秒
	10	0	关闭真空泵阀
	10	0	停泵
停冷却水:	20	0	该过程历时 0 秒
	10	0	关冷却水阀
	10	0	关闭冷凝水阀 VA619
关疏水阀:	40	0	该过程历时 0 秒
7	10	0	关闭 VA615
	10	0	关闭 VA616
	10	0	关闭 VA617
	10	0	关闭 VA618

4.事故操作规程

(1) 冷物流进料调节阀卡

原因:冷物流进料调节阀 FV601 卡

现象: 进料量减少, 蒸发器液位下降, 温度升高、压力升高

处理: 打开旁路阀 VA601, 保持进料量至正常值。

学员姓名:			学员
操作单元:			冷物流进料调节阀卡
DKII 173			1, 130,130,114,3 1.113 1
总分:90.00			测评历时 0 秒
实际得分:0.00			测评限时 0 秒
百分制得分:0.00			
其中			
普通步骤操作得分:0.00		7	
质量步骤操作得分:0.00			4 4 -
趋势步骤操作得分:0.00			
操作失误导致扣分:0.00			
以下为各过程操作明细:	应得	实得	操作步骤说明
		V	
冷物流进料阀 FV101 卡:	30	0	该过程历时 0 秒
	10	0	关闭 FV601 前截止阀
	10	0	关闭 FV601 后截止阀
	10	0	打开 FV601 旁通阀 VA601,维持塔釜
	10	U	液位
质量指标:	60	0	该过程历时 0 秒
	30	0	H ===()(1 = : (1)
	30	0	原料液进料流量维持在 12063kg/h

(2) F601A 液位超高

原因: F601A 液位超高

现象: F601A 液位 LIC601 超高,蒸发器压力升高、温度增加

处理: 调整 LV601 开度, 使 F601A 液位稳定在 50%

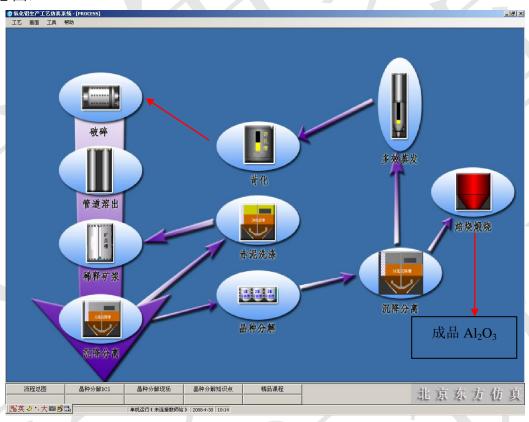
学员姓名:		学员
操作单元:		F601A 液位超高
总分:70.00		测评历时 0 秒
实际得分:0.00		测评限时 0 秒
百分制得分:0.00		
其中		
普通步骤操作得分:0.00		
质量步骤操作得分:0.00		

趋势步骤操作得分:0.00			
操作失误导致扣分:0.00			
以下为各过程操作明细:	应得	实得	操作步骤说明
F601A 液位超高:	70	0	该过程历时 0 秒
	10	0	将 LC601 设为手动模式
	10	0	开大阀门 LV601
	20	30 0	调整 LV601 开度,使 F601A 液位
	30		稳定在 50%
	10	0	F601A 液位稳定在 50%后,将
			LIC601 设为自动
	10	0	将 LIC601 的设定值设为 50

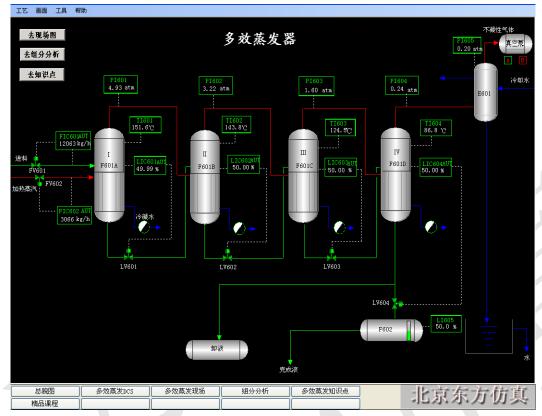
(3) 真空泵 A 故障

原因: 运行真空泵 A 停

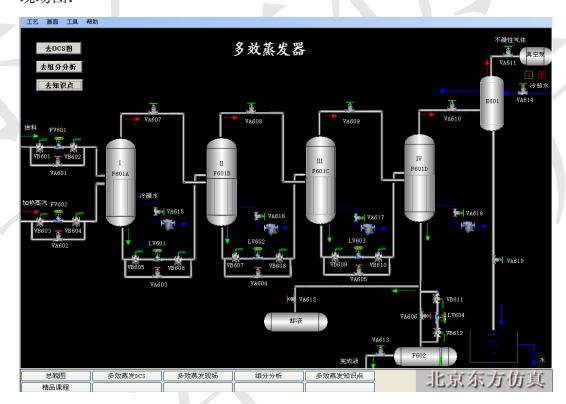
现象: 画面真空泵 A 显示为开, 但冷凝器 E601 和末效蒸发器 F601D 压力急剧上升

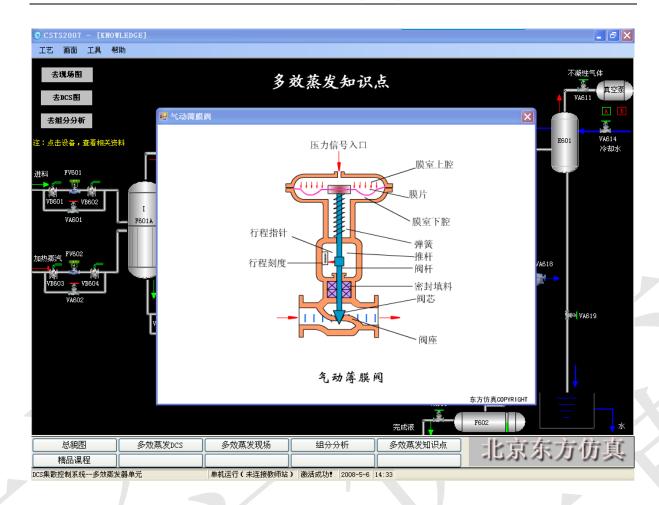

处理:启动备用真空泵 B。

学员姓名:			学员
操作单元:			真空泵 A 故障
总分:90.00			测评历时 0 秒
实际得分:0.00			测评限时 0 秒
百分制得分: 0.00			
13/			
其中	7		
普通步骤操作得分:0.00			
质量步骤操作得分:0.00			
趋势步骤操作得分:0.00			
操作失误导致扣分:0.00			
以下为各过程操作明细:	应得	实得	操作步骤说明
真空泵 A 故障:	30	10	该过程历时 0 秒
	10	0	启动备用泵 B
	10	0	停泵 A
步骤结束:	10	10	调节真空泵阀 VA611 开度, 使末


			效压力达到规定值
质量指标:	60	0	该过程历时 0 秒
	30	0	冷凝罐 E101 压力
	30	0	末效蒸发器压力

三、仿真界面


流程总图:


DCS 界面:

现场图:

知识点界面:

附: 思考题

- 1 根据蒸发装置的级数可分为(AB)
- A 单级蒸发
- B 多级蒸发
- C逆流蒸发
- 2 根据溶液循环的方式分为(AC)
- A 自然循环蒸发
- B 真空循环蒸发
- C 强制循环蒸发
- 3 在氧化铝生产中,多级真空蒸发装置得到最广泛的应用。一般多效蒸发装置的末效或后几效 总是在(C)下操作
- A 常压
- B 加压
- C 真空
- 4 真空蒸发具有以下优点(ABCD)
- A 在减压下溶液的沸点降低,可增大加热蒸汽与溶液之间的温度差,增加传热推动力,当传热量一定时,可以减少蒸发器所需的传热面积
- B可以蒸发不耐高温的溶液
- C可以利用低压蒸汽或废蒸汽作加热剂
- D由于溶液的沸点较低,蒸发器损夫于外界的热量也较小

- 5 多效蒸发操作的加料,可有不同的方法(ABCD)
- A 顺流法
- B 逆流法
- C错流法
- D平流法
- 6 工业中最常用的为(A)加料法
- A 顺流法
- B 逆流法
- C错流法
- D 平流法
- 7 顺流流程和逆流流程各有优缺点,对两种流程的比较正确的是(ACD)
- A 顺流原液流动的方向与蒸汽流动一致, 逆流与蒸汽流动方向相逆
- B 在顺流流程中,溶液需用泵从一效输送到另一效;在逆流中,溶液自行从一效输送到另一效
- C 顺流流程的消耗蒸汽量相对比逆流流程少
- D 顺流流程对设备腐蚀轻微,而逆流流程对设备强烈腐蚀损坏
- 8 蒸发设备目前有(ABCDE)等
- A 标准式蒸发器
- B 外加热式自然循环蒸发器
- C 强制循环蒸发器
- D 膜式蒸发器
- E 绝热自蒸发器
- 9 蒸发器的结构形式很多,选用时应主要考虑以下原则(ABCD)
- A 要有较高的传热系数,能满足生产工艺要求
- B 生产能力大
- C 结构简单,操作维修方便
- D 能适应所处理物料的工艺特性
- 10 我国氧化铝厂的种分母液的蒸发多采用(B)
- A 标准式蒸发器
- B 外加热式自然循环蒸发器
- C 强制循环蒸发器
- D 膜式蒸发器
- E 绝热自蒸发器